Acquisire competenze avanzate nell'ambito dell'Analisi Non Lineare e PDE che sono introduttive alla ricerca attuale
Prerequisiti
Corsi di base in Analisi Matematica.
Metodi didattici
Lezioni frontali.
Verifica Apprendimento
Esame scritto e orale.
Contenuti
Euler –Lagrange equations and solutions of partial differential equations via the Dirichlet principle of minimal Energy. Towards weak solutions. A few facts from Functional Analysis: weak derivatives and Sobolev spaces, embedding inequalities, the Rellich-Kondrachov theorem, extensions and traces. A direct method in the Calculus of Variations, minima of weakly lower semicontinuous functionals: applications to nonlinear Schroedinger’s equation. The Nehari manifold and ground states solutions, bootstrap argument in elliptic regularity theory. Introduction to topological methods in Nonlinear Analysis for indefinite functionals: deformation lemma and the mountain-pass theorem by Ambrosetti-Rabinowitz, applications to semilinear elliptic equations. The Ekeland Variational Principle. The effect of Symmetry, Critical growth problems, lack of compactness and Pohozaev identity. Quantization of energy and the Brezis-Nirenberg theorem.
Lingua Insegnamento
Inglese
Altre informazioni
Questo corso intende introdurre gli studenti alla ricerca contemporanea in Analisi Non Lineare e alle equazioni alle derivate parziali non lineari.