Skip to Main Content (Press Enter)

Logo UNINSUBRIA
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNINSUBRIA

|

UNI-FIND

uninsubria.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

CASTLE: Continuously Anonymizing Data Streams

Articolo
Data di Pubblicazione:
2011
Abstract:
Most of existing privacy preserving techniques, such as k-anonymity methods, are designed for static data sets. As such, they cannot be applied to streaming data which are continuous, transient and usually unbounded. Moreover, in streaming applications, there is a need to offer strong guarantees on the maximum allowed delay between incoming data and the corresponding anonymized output. To cope with these requirements, in this paper, we present CASTLE (Continuously Anonymizing STreaming data via adaptive cLustEring), a cluster-based scheme that anonymizes data streams on-the-fly and, at the same time, ensures the freshness of the anonymized data by satisfying specified delay constraints. We further show how CASTLE can be easily extended to handle l-diversity. Our extensive performance study shows that CASTLE is efficient and effective w.r.t. the quality of the output data.
Tipologia CRIS:
Articolo su Rivista
Keywords:
anonymity, Data stream, privacy-preserving data mining
Elenco autori:
Cao, J.; Carminati, Barbara; Ferrari, Elena; Tan, K. L.
Autori di Ateneo:
CARMINATI BARBARA
FERRARI ELENA
Link alla scheda completa:
https://irinsubria.uninsubria.it/handle/11383/1710129
Pubblicato in:
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING
Journal
  • Accessibilità
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.11.5.0