Skip to Main Content (Press Enter)

Logo UNINSUBRIA
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNINSUBRIA

|

UNI-FIND

uninsubria.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Protecting Privacy in Knowledge Graphs With Personalized Anonymization

Articolo
Data di Pubblicazione:
2024
Abstract:
Knowledge graphs (KGs) are emerging data models allowing data providers to share data. This data sharing might bring new knowledge and collaborations, with evident benefits for providers. However, since KGs might contain sensitive information about users, it is of utmost importance to ensure KG anonymization before publishing. Recently, some proposals have addressed the problem of KGs' anonymization based on the k k-anonymity principle. These techniques propose to anonymize the whole dataset with the same anonymization level. However, in a contest where data are collected from different users, it is crucial to consider also users' preferences on the anonymization level to adopt for their data. To cope with this requirement, this paper presents the Personalized k k-Attribute Degree (p-k k-ad) principle. It allows users to specify their anonymity levels (the k k values) while preventing adversaries from re-identifying them with a confidence higher than frac1k 1k with their specified k k. Moreover, we design the Personalized Cluster-Based Knowledge Graph Anonymization Algorithm (PCKGA) to generate anonymized KGs satisfying p-k k-ad. We conduct experiments on four real-life datasets and show that PCKGA greatly improves the quality of anonymized KGs comparing to previous algorithms.
Tipologia CRIS:
Articolo su Rivista
Elenco autori:
Hoang, A. -T.; Carminati, B.; Ferrari, E.
Autori di Ateneo:
CARMINATI BARBARA
FERRARI ELENA
Link alla scheda completa:
https://irinsubria.uninsubria.it/handle/11383/2179551
Pubblicato in:
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING
Journal
  • Accessibilità
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.11.5.0