Skip to Main Content (Press Enter)

Logo UNINSUBRIA
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNINSUBRIA

|

UNI-FIND

uninsubria.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Intrinsic dimension as a multi-scale summary statistics in network modeling

Articolo
Data di Pubblicazione:
2024
Abstract:
Complex networks are powerful mathematical tools for modelling and understanding the behaviour of highly interconnected systems. However, existing methods for analyzing these networks focus on local properties (e.g. degree distribution, clustering coefficient) or global properties (e.g. diameter, modularity) and fail to characterize the network structure across multiple scales. In this paper, we introduce a rigorous method for calculating the intrinsic dimension of unweighted networks. The intrinsic dimension is a feature that describes the network structure at all scales, from local to global. We propose using this measure as a summary statistic within an Approximate Bayesian Computation framework to infer the parameters of flexible and multi-purpose mechanistic models that generate complex networks. Furthermore, we present a new mechanistic model that can reproduce the intrinsic dimension of networks with large diameters, a task that has been challenging for existing models.
Tipologia CRIS:
Articolo su Rivista
Elenco autori:
Macocco, I.; Mira, A.; Laio, A.
Autori di Ateneo:
MIRA ANTONIETTA
Link alla scheda completa:
https://irinsubria.uninsubria.it/handle/11383/2178371
Link al Full Text:
https://irinsubria.uninsubria.it//retrieve/handle/11383/2178371/306897/s41598-024-68113-3.pdf
Pubblicato in:
SCIENTIFIC REPORTS
Journal
  • Accessibilità
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.12.3.0