Skip to Main Content (Press Enter)

Logo UNINSUBRIA
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNINSUBRIA

|

UNI-FIND

uninsubria.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Antagonism of ionotropic glutamate receptors attenuates chemical ischemia-induced injury in rat primary cultured myenteric ganglia

Articolo
Data di Pubblicazione:
2014
Abstract:
Alterations of the enteric glutamatergic transmission may underlay changes in the function of myenteric neurons following intestinal ischemia and reperfusion (I/R) contributing to impairment of gastrointestinal motility occurring in these pathological conditions. The aim of the present study was to evaluate whether glutamate receptors of the NMDA and AMPA/kainate type are involved in myenteric neuron cell damage induced by I/R. Primary cultured rat myenteric ganglia were exposed to sodium azide and glucose deprivation (in vitro chemical ischemia). After 6 days of culture, immunoreactivity for NMDA, AMPA and kainate receptors subunits, GluN1 and GluA1-4, GluK1-3 respectively, was found in myenteric neurons. In myenteric cultured ganglia, in normal metabolic conditions, -AP5, an NMDA antagonist, decreased myenteric neuron number and viability, determined by calcein AM/ethidium homodimer-1 assay, and increased reactive oxygen species (ROS) levels, measured with hydroxyphenyl fluorescein. CNQX, an AMPA/kainate antagonist exerted an opposite action on the same parameters. The total number and viability of myenteric neurons significantly decreased after I/R. In these conditions, the number of neurons staining for GluN1 and GluA1-4 subunits remained unchanged, while, the number of GluK1-3-immunopositive neurons increased. After I/R, -AP5 and CNQX, concentration-dependently increased myenteric neuron number and significantly increased the number of living neurons. Both -AP5 and CNQX (100-500 μM) decreased I/R-induced increase of ROS levels in myenteric ganglia. On the whole, the present data provide evidence that, under normal metabolic conditions, the enteric glutamatergic system exerts a dualistic effect on cultured myenteric ganglia, either by improving or reducing neuron survival via NMDA or AMPA/kainate receptor activation, respectively. However, blockade of both receptor pathways may exert a protective role on myenteric neurons following and I/R damage. The neuroprotective effect may depend, at least in part, on the ability of both receptors to increase intraneuronal ROS production.
Tipologia CRIS:
Articolo su Rivista
Keywords:
Neurons; Ischemia; Reperfusion; Ganglia; Glutamate; Drug metabolism; Reactive oxygen species; Cytoplasmic staining
Elenco autori:
Carpanese, E.; Moretto, P.; Filpa, V.; Marchet, S.; Moro, E.; Crema, F.; Frigo, G.; Giaroni, Cristina
Autori di Ateneo:
GIARONI CRISTINA
Link alla scheda completa:
https://irinsubria.uninsubria.it/handle/11383/1965720
Pubblicato in:
PLOS ONE
Journal
  • Dati Generali

Dati Generali

URL

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0113613
  • Accessibilità
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.12.3.0